On the symmetric solutions of a linear matrix equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The symmetric linear matrix equation

In this paper sufficient conditions are derived for the existence of unique and positive definite solutions of the matrix equations X−A1XA1− . . .−A∗mXAm = Q and X+A1XA1+ . . .+ A∗mXAm = Q. In the case there is a unique solution which is positive definite an explicit expression for this solution is given.

متن کامل

Ela the Symmetric Linear Matrix Equation

In this paper sufficient conditions are derived for the existence of unique and positive definite solutions of the matrix equations X−A1XA1− . . .−A∗mXAm = Q and X+A1XA1+ . . .+ A∗mXAm = Q. In the case there is a unique solution which is positive definite an explicit expression for this solution is given.

متن کامل

Iterative solutions to the linear matrix equation

In this paper the gradient based iterative algorithm is presented to solve the linear matrix equation AXB +CXD = E, where X is unknown matrix, A,B,C,D,E are the given constant matrices. It is proved that if the equation has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. Two numerical examples show that the introduced iterative a...

متن کامل

The Symmetric and Antipersymmetric Solutions of the Matrix Equation

A matrix A = (aij) ∈ Rn×n is said to be symmetric and antipersymmetric matrix if aij = aji = −an−j+1,n−i+1 for all 1 ≤ i, j ≤ n. Peng gave the bisymmetric solutions of the matrix equation A1X1B1+A2X2B2+. . .+AlXlBl = C, where [X1, X2, . . . , Xl] is a real matrices group. Based on this work, an adjusted iterative method is proposed to find the symmetric and antipersymmetric solutions of the abo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1987

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(87)90308-9