On the symmetric solutions of a linear matrix equation
نویسندگان
چکیده
منابع مشابه
The symmetric linear matrix equation
In this paper sufficient conditions are derived for the existence of unique and positive definite solutions of the matrix equations X−A1XA1− . . .−A∗mXAm = Q and X+A1XA1+ . . .+ A∗mXAm = Q. In the case there is a unique solution which is positive definite an explicit expression for this solution is given.
متن کاملon the effect of linear & non-linear texts on students comprehension and recalling
چکیده ندارد.
15 صفحه اولEla the Symmetric Linear Matrix Equation
In this paper sufficient conditions are derived for the existence of unique and positive definite solutions of the matrix equations X−A1XA1− . . .−A∗mXAm = Q and X+A1XA1+ . . .+ A∗mXAm = Q. In the case there is a unique solution which is positive definite an explicit expression for this solution is given.
متن کاملIterative solutions to the linear matrix equation
In this paper the gradient based iterative algorithm is presented to solve the linear matrix equation AXB +CXD = E, where X is unknown matrix, A,B,C,D,E are the given constant matrices. It is proved that if the equation has a solution, then the unique minimum norm solution can be obtained by choosing a special kind of initial matrices. Two numerical examples show that the introduced iterative a...
متن کاملThe Symmetric and Antipersymmetric Solutions of the Matrix Equation
A matrix A = (aij) ∈ Rn×n is said to be symmetric and antipersymmetric matrix if aij = aji = −an−j+1,n−i+1 for all 1 ≤ i, j ≤ n. Peng gave the bisymmetric solutions of the matrix equation A1X1B1+A2X2B2+. . .+AlXlBl = C, where [X1, X2, . . . , Xl] is a real matrices group. Based on this work, an adjusted iterative method is proposed to find the symmetric and antipersymmetric solutions of the abo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1987
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(87)90308-9